
Project 3 – Minesweeper 
Contents 

Overview ................................................................................................................................................... 2 

Description ............................................................................................................................................... 2 

Rules Overview...................................................................................................................................... 2 

Other features: ...................................................................................................................................... 3 

Non-standard features for your version of this project ........................................................................ 3 

Window / Board Setup ............................................................................................................................. 3 

SFML .......................................................................................................................................................... 3 

SFML Basics ........................................................................................................................................... 4 

SFML Tutorials ....................................................................................................................................... 4 

SF::Texture Objects and Global Variables ............................................................................................. 4 

Images ....................................................................................................................................................... 5 

Other Features .......................................................................................................................................... 6 

Buttons .................................................................................................................................................. 6 

Adjacent Mines and Tiles ...................................................................................................................... 6 

Loading board from files ....................................................................................................................... 7 

Code Structure .......................................................................................................................................... 8 

Paths ......................................................................................................................................................... 8 

Mouse Interactions .................................................................................................................................. 9 

Storing Resources ..................................................................................................................................... 9 

Using Documentation .............................................................................................................................. 9 

Tips .......................................................................................................................................................... 10 

Submissions ............................................................................................................................................ 10 

Partial Credit for Features that Partially Work ..................................................................................... 10 

Rubric ...................................................................................................................................................... 11 

Sample Images ........................................................................................................................................ 12 

 

 

  



Overview 

For this project you are going to create a version of the classic game, Minesweeper. Your final version 

will look something like this: 

  

If you’ve never played the game before, you can find a number of playable versions of this online: 

http://minesweeperonline.com/ 

http://www.freeminesweeper.org/minecore.html 

To create this project you are going to use SFML (the Simple and Fast Multimedia Library) to do the work 

of drawing images to the screen and getting mouse input, while you will be responsible for everything 

else. 

Description 
Rules Overview 
The rules of the game are as follows: 

There exists a board, which contains a grid of spaces. A space could be a mine, or not. The player clicks 

on a space, and it gets revealed. The goal of the game is to reveal all the spaces that are not mines, 

while avoiding the spaces that are. 

When a space is revealed: 

If it’s a mine, the game ends 

If it’s not a mine, it shows the number of mines adjacent to that space (anywhere from 0 to 8, with 0 

just showing as an empty space) 

- If a space has no adjacent mines, all non-mine spaces adjacent to it are also revealed 

The player uses the numbers as clues to figure out where other mines may be located. 

When all of the non-mine spaces have been revealed, the player wins! 

http://minesweeperonline.com/
http://www.freeminesweeper.org/minecore.html


Other features: 
Flags: Right-clicking a hidden space puts a flag on that space, marking it as a possible mine. Flagged 

spaces cannot be revealed (with left-clicks or as a result of adjacent spaces being revealed), but another 

right-click will remove the flag. 

Mine Counter: to track the number of mines that are on the board. Every time the player places a flag, 

the counter goes down by one. Every time they remove a flag, the counter goes up by one. The mine 

counter CAN go negative! 

Restart Button: The smiley face centered at the top or bottom of the window lets you restart a new 

board with everything reset and mines randomized 

Non-standard features for your version of this project 
Debug Button: Clicking this button will toggle the visibility of the mines on the board. Use this to help 

you test/debug various features of the game. Having to play the game properly each time you want to 

test something is very time-consuming. Creating these developer shortcuts helps speed up the 

development process 

Test Buttons #1-3: Another development shortcut, clicking on these loads a file with a specific board 

layout, details on this later. 

Those are the features that your game will need to have. The rules are pretty simple, but even simple 

games like this can be challenging to implement. 

Window / Board Setup 
Most implementations of this game allow for variability in difficulty, board size, etc, but for this project 

you are going to use these dimensions and values: 

Window Size 800 x 600 

Mine count 50 on randomly generated maps, determined by 
file in other cases (more on this later) 

Tile count 25 x 16 (400 tiles total) 

SFML 
The library that you will be using in this project is SFML—Simple Fast Multimedia Library. The first thing 

you would need to do is compile an application using this. Building an application using an external 

library can be a difficult thing, but it’s something that you typically only have to do once at the start of a 

project, and then you’re good to go until that project is finished. 

To get started with SFML, visit this site: 

https://www.sfml-dev.org/download/sfml/2.5.1/ 

You want to download the appropriate version for the IDE/compiler that you are using. If you are using 

something that isn’t listed there, it is HIGHLY RECOMMENDED that you install and use one of the 

recommended tools. On Windows that would be Visual Studio, XCode on MacOS, etc. The links on that 

page are for already-compiled versions of the library which will work “out of the box” with the 

appropriate compiler. 

https://www.sfml-dev.org/download/sfml/2.5.1/


Installing and compiling your first “Hello World” program can be a bit tricky, especially if you’ve never 

done it before. There are guides here: https://www.sfml-dev.org/tutorials/2.5/, and certainly elsewhere 

online, but often the best source is from the developer’s themselves.  

SFML Basics 
There are many guides and tutorials on how to use SFML, but the key features that you will be utilizing 

for this project are: 

sf::Sprite These objects will let you draw some or all of a texture to the screen, the primary 
object that you will use to represent all aspects of the game 

sf:Texture These store external images that you program needs 

sf:Vector2f/i/u A 2-dimensional vector (an X and Y position), a location on the screen; the f/i/u at 
the end indicates the type of data used for storage (float, int, unsigned int) 

sf::Mouse The mouse class, giving you information about where the cursor is located, and 
whether or not a mouse button is pressed 

SFML Tutorials 
This document will not replicate the wealth of information already out there about this library. The 

primary list of examples/tutorials can be found here: https://www.sfml-dev.org/tutorials/2.5/ 

From that page, a few in particular you will find useful for this project: 

https://www.sfml-dev.org/tutorials/2.5/window-window.php 

https://www.sfml-dev.org/tutorials/2.5/window-events.php 

https://www.sfml-dev.org/tutorials/2.5/graphics-sprite.php 

Anything beyond that will not be applicable for this project (networking, audio, etc will NOT be used). 

Everything you see on the screen (each space, numbers, buttons, etc) will all be created and drawn the 

same way: load a texture, create one or more sprites from that texture, and then draw them to the 

screen. 

You will have to load and store the images listed in the next section in sf::Texture objects. 

SF::Texture Objects and Global Variables 
In this project you should not, under any circumstances, attempt to use sf::Texture objects in global 

space. Globals in general should be avoided, but if you try to load a sf::Texture in global space it may be 

initialized before other parts of SFML are initialized, causing it to crash before main() even starts. 

To make matters worse, this problem might not occur on your machine, but it could on someone else’s 

(i.e. the person grading your project).  

  

https://www.sfml-dev.org/tutorials/2.5/
https://www.sfml-dev.org/tutorials/2.5/
https://www.sfml-dev.org/tutorials/2.5/window-window.php
https://www.sfml-dev.org/tutorials/2.5/window-events.php
https://www.sfml-dev.org/tutorials/2.5/graphics-sprite.php


Images 
For this project you will have a folder, creatively called images, where all of the images for this project 

will be stored. These images will all be loaded as sf::Texture objects to be used in the creation of 

sf::Sprite objects.  

The images are as follows: 

Game Images 

 
mine.png The star of the game (although if you play properly, 

you’ll never see one!) 

 
tile_hidden.png What all tiles look like before they are clicked/revealed 

 
tile_revealed.png A revealed tile with no adjacent tiles 

 
number_#.png Tiles with the numbers 1-8 on them (replace # with the 

appropriate number. Used for tiles that have 1-8 
adjacent mines 

 
flag.png Draw this on top of hidden tiles when they are flagged 

by the player as possible mines. 

UI Images 

 

face_happy.png Click this button to reset the map. New mines, 
everything hidden, it’s like you restarted the program. 

 

face_win.png Victory! 

 

face_lose.png The opposite of victory! (It’s cool, no smiley faces were 
harmed during the creation of this project) 

 digits.png Used for the digits on the “remaining mines” display. 
You can use this one texture for all the numbers, and 
change the “texture rect” of a sprite to draw a 
different portion of the image. 
 
The size of each digit (and the size of the texture rect 
you should use) is 21 x 32 pixels, and each digit would 
be offset by 21 (the width) times the digit you wanted. 
 
See https://www.sfml-dev.org/tutorials/2.5/graphics-
sprite.php for more information 

 

debug.png Used to toggle debug mode 

 

test_1/2/3.png Used to load test files from which the board will be set 

https://www.sfml-dev.org/tutorials/2.5/graphics-sprite.php
https://www.sfml-dev.org/tutorials/2.5/graphics-sprite.php


Other Features 
Buttons 
A button is really just an image that you can click on to make something happen. A more complex UI 

system would use an event/messaging system, but on a basic level you just need a sf::Sprite to 

represent the button, and every time the player clicks on something, you need to check if that mouse 

click occurred inside the boundaries of the sf::Sprite you’re using as the button. 

If you’re drawing a sprite somewhere, you know its position (it’s 0, 0 by default, or whatever you set it 

to). You can get the width/height of the sprite through its textureRect, and then it’s just a matter of 

checking if the mouse position is inside that box. 

Adjacent Mines and Tiles 
In order to calculate the number of nearby mines, as well as when revealing tiles, each tile should store 

a list of neighboring tiles. A tile could have UP TO 8 neighbors. An easy way to do this is with pointers. 

Since the number is a variable, a dynamically sized container would be perfect for this. You could also 

use a fixed-length array, since no tile will ever have more than 8 neighbors. 

vector<Tile*> adjacentTiles; // Store each tile near us, the size() of each vector will vary 

Tile* neighbors[8]; // Always 8 pointers, some of which might be nullptr 

 

  

Adjacent Mines 

8 5 

3 

In this example, tiles on the corners have 3 

adjacent neighbors. The tiles on the edges of 

the board have 5 neighbors, while tiles not on 

the corner or the edges have 8 neighbors. 

If you were to create an array of 8 pointers, 

some of them might not be valid, depending 

on where that particular tile is located 

How you determine which tiles are nearby 

depends on how you set up the original 

board. 2D array? Each index will have 

neighbors that are +- 1 in the x/y axes. 

Using a single array/vector? The calculations 

will be a bit different. 

nullptr! 



Loading board from files 
When clicking either of these buttons: 

   

You should open up one of the three files located in the “boards” folder. For Test #1, you should open 

“testBoard1.brd”, test #2 is “testBoard2.brd”, etc. These are plain text files, and you can open them in 

any text editor. 

Those files contain a bunch of 0s and 1s to represent the layout of a particular map. Why use these? 

When developing any project, having some sort of test data, some known value, is essential. How you 

do you know if hundreds of randomly generated values are correct or not? That’s really difficult. Using 

specific patterns can help you determine if you’re code is working correctly. 

testBoard testBoard2 

  

  
testboard loaded, no revealed tiles testboard2 loaded, one tile on the edge revealed 

(which caused a cascaded of revealed tiles) 

 

Your code will be tested with boards that are DIFFERENT THAN THE PROVIDED SAMPLES. While you may 

hard-code tests in your own projects, using external data makes your program more flexible. 



Code Structure 
With larger programs, you can accomplish the goal in any number of ways. There isn’t a single way to 

write this that works better above all others. From the outside perspective (i.e. that of a player), your 

application needs to DO various things: 

 When the player clicks a space, reveal it. 

 When the player clicks the restart button, reset the board. 

 If a mine is revealed, end the game. 

And so on. 

HOW you choose to accomplish those things is up to you. If you want to write a single, gigantic main() 

function, you are free to do so—that approach is not recommended, however. A few suggestions:  

A class to represent the board. This represents the core data object in the game. 

A class for tiles/spaces. The board is made up of a whole lot of these things. Each one of these can be a 

mine, have a flag, some number of adjacent tiles/mines, etc. 

Many programs (games or otherwise) do the same things over and over again while the application is 

running. The ability to easily (in code) reset everything is critical. Think about what sorts of helper 

functions you might want to make that happen. Things like: 

Restarting the board 

Setting or clearing tiles of flags 

Setting or clearing mines (singly or in large quantities) 

Recalculating the number of adjacent mines 

Etc… 

Paths 
In this project, any operations involving files (loading textures 

and boards) should use RELATIVE paths, NOT absolute paths. 

Your code should be based around a folder structure like that 

the image on the right. When you load a texture, it should be 

from the images folder, like “images/mine.png”, and when 

you load a board file it should be from the boards folder, such 

as “boards/testboard2.brd” 

 

  



Mouse Interactions 
The application can really do “nothing” until the user clicks their mouse. Typically games and many other 

applications are clearing/redrawing the screen on a regular basis (often dozens of times a second). Until 

the player clicks the mouse somewhere in the window, the program will appear to just sit there, idle. 

Once the player has clicked, however (you can check for this in the event loop), you then need to do 

some checks about that click. 

Where did they click? 

Is that a valid space on the board anywhere? If so, should you do anything in response to this? 

Did the player just click a mine? 

Boom, game over! 

If not a mine, reveal the tile (and possibly reveal adjacent tiles, which could reveal more tiles…) 

Revealing a tile 

If the number of adjacent mines is 0, reveal any neighboring tiles as well (as long as they aren’t mines) 

In revealing those, do the same sort of check for any neighbors to that tile… (sounds a bit like recursion 

here!) 

Storing Resources 
While a program is running, it needs RESOURCES to get the job done—things like icons, textures, sound 

files, etc. Many of the resources need to be stored for long-term use, as they may be called upon time 

and time again… but you don’t always know when they’ll be needed when you compile your code. 

A great storage container for assets that you want to reference by name is the map<>. Storing 

something that you can access by its name with container[“NameOfAsset”] is vastly preferable to that of 

dealing with arrays—was “GameOver.png” stored in array[25], or array[26]? 

You may find it helpful to create a single storage container for all of the sf::Texture objects, and then 

pass that around to any class which might need those files. 

Using Documentation 
Reading through documentation, help files, guides, tutorials, etc is an absolutely critical skill that you 

must develop. The problem you are currently trying to solve, the exact combination of variables for your 

scenario might not have existed before now. 

The One True Answer to your problem might not be out there on the Internet, in a StackOverflow.com 

question, or in a video on YouTube. However, the information to help you figure out PARTS of your 

problem are almost certainly out there. You will have to figure out how to make sense of those smaller 

bits of information and decide on a proper course of action. 

For example, the data referenced sf::Texture objects disappears when the object is deleted, or falls out 

of scope. You can’t create a sf::Texture inside a function, create a sf::Sprite from that texture, and then 

use the sprite outside the function. An example of this (and what not to do) in the documentation: 

https://www.sfml-dev.org/tutorials/2.5/graphics-sprite.php#the-white-square-problem 

https://www.sfml-dev.org/tutorials/2.5/graphics-sprite.php#the-white-square-problem


Tips 
Any libraries or APIs that you work with will have some sort of documentation. READ IT! You absolutely 

MUST get used to being able to sift through information to find the answers that you are looking for. 

Don’t be afraid to experiment! When getting access to new code, you have to figure out how it works. 

Documentation is all fine and good, but at some point you have to actually DO IT yourself. Learning by 

doing is the most effective way. Write some code, screw it up, fix that code, do it all over again. 

Don’t try to write the entire program all at once. Hard-code test values if you need to. Try to get one 

single tile working on a basic level (position, responding to mouse clicks, etc) before creating 

dozens/hundreds of them. 

Think about what types of classes or functions you might want to have for this project. There is a board, 

a board has tiles, tiles have various properties or states… How do you want to store that data? An array? 

A vector<>? A 2-dimensional array? 

You’re the one writing the code! Write it in a way that makes sense to you. Everyone tackles problems a 

bit differently, find an approach that works for you. 

Submissions 
You are going to turn in your source code, and your source code only. No images, no SFML libraries, only 

the .h and .cpp files you wrote to complete the project. Zip up JUST YOUR SOURCE CODE and name it 

LastName.FirstName.Project3.zip. 

Partial Credit for Features that Partially Work 
The features you need to implement for this project are listed in the rubric on the next page, along with 

point values. For each feature you can get full points, half points, or no points. 

1. Full points – Feature works perfectly, no bugs of any kind 

2. Half points – Feature has any bugs at all, or is partially implemented 

3. No points – Feature not implemented at all, or so minimally implemented that no functionality 

exists (for example: drawing a button to the screen that you can’t click on at all doesn’t count as 

partial implementation) 

Point deductions: 

-10 for using global variables (sf::Texture objects or otherwise). Seriously, globals are bad. 

-10 for not using relative paths, or submitting anything other than your source code 

 

  



Rubric 
 

Tile Revealing Clicking on a tile reveals it. If it is a mine, game over. If it has 0 adjacent 
mines, reveal all neighboring tiles which are not currently revealed, not 
mines and not flagged, and then each of those neighbors go through this 
process as well. Depending on the board layout, a single click could reveal 
nearly the entire board! 

20 

Tile Display  Tiles display depending on their state: 
- Unrevealed (the default state) 
- Revealed, and empty (no adjacent mines) 
- Revealed, and near 1-8 mines (showing the appropriate number) 
- Revealed, and showing a mine 

10 

Flags Right-clicking on a hidden tile sets a flag on it. Right-clicking a flagged tile 
removes the flag. 
Left-clicking a tile with a flag has no effect. 
Flagged tiles cannot be revealed in any way (by the player, or by a 
revealing algorithm). The flag must be removed first. 
The number of flags on the board affects the counter (see below). 

20 

Mines Remaining A counter of how many mines are on the board, minus the number of flags 
placed. Adding/removing flags from tiles affects this. Remaining flags CAN 
go negative! 

20 

End Conditions - 
Victory 

Revealing all non-mine tiles ends the game, and marks all remaining tiles 
(i.e. the mines) with flags. Flagging mines will affect the counter, so the 
final counter will be a 0 after you win. Smiley face changes to sunglasses 
version. 

10 

End Conditions - 
Defeat 

Clicking on a mine ends the game. What should happen: 
- All tiles with mines are revealed (and display on top of any flags you may 
have place) 
- The smiley face changes to the dead face (he's just acting, don't worry!) 
- No further interactions with the game board are possible. 
- The player CAN click the dead smiley face to start a new game, or use any 
of the testing/debug buttons. 

10 

Random Mine 
Placement 

When the game starts and when the board is reset (by clicking the smiley 
face button), 50 mines are randomly placed on the map--no more, no less 

10 

Test Buttons (1, 2 
and 3) 

3 test buttons to load testBoard1.brd, testBoard2.brd, etc. 
Each button updates all board spaces according to the data in the file, 
resets all flags and the counter – it’s like you just started the program, 
with a specific set of data instead of random tiles. 
Your code will be tested with DIFFERENT BOARD FILES than the samples 
provided. (Same file format, just different 1s and 0s.) 

20 

Debug Button Clicking the debug button toggles whether or not to show the mines on 
the map. Since the intent of this feature is to help YOU, the programmer, 
see the mines, draw the mines OVER anything else. 
Don’t stop drawing anything else. These are in addition to whatever is 
normally being displayed. 

10 

 Total 130 



Sample Images 
Victory 

Defeat 

 
Victory! 

 
Defeat… 

 
Flagged tiles (on a board with 50 mines) 

 
Same scenario, debug mode turned on 

 
Negative counter (Flags on a board with only 1 

mine) 

 
Same board, after just one click 

 


